REPORT RRITTRN BY VIRRITNG ON

a) Synohronising Device for Teleprinters (GLEICHLAUF)
b) hirtifiaial Speeoh Apparatus
c) "Three-fold wobbling" process
a) Synohronising installation for producing the "wobble-frequenalea"
e) Voloe-Sorambling Apparatus (small BAUSTEIN)

TICOK
20 July 1945

Copy No. 16
No. of pages 15

DISTRIBUTION

British

1. Direotor
2. D.D. 3
3. D.D. 4
4. D.D. (N.S.)
5. D.D. (177)
6. D.D. (h.S.)

7-8. h.D. (C.O.R.) (2)
9. Lt. Col. Leathem

TICOI

10. Chairman

11-12. S.L.C. (2)
13. Gär. Baoon
14. Cdr. YacKenaie
15. CAr. Tandy
16. Lt. Col. Johnscn
17. Lt. Cdr. Manson
18. Ha,jor Seaman
19. Lt. Bachus
20. Lt. Vance
21. Capt. Cowan
22. Lt. Fehl

23-24. Tioom Piles (2)
U.S.

25-26. OP 20-G(2) (via Lt. Pendergrasa)
27. O -2 (via Lt. Cot. Hilles)

28-29. S. S. i. (2) (via Major Seamen)
30. Direotor, S.I.D. EROUSA (via Lt. Col. Johnson)

The development of the Synciaronising Device.
I. The problea:

The problen aubitted wis as follows:
In lorg-distance telegraphic traffic using autocatic letter by letter synchronised cypher machines, special difficulties in working are encountered as the reault of interference impulses in the lines of communication (I / T and especially i / I) frequently causing the cypher machines to slip out of synchronisation between the transmitting stations and the receiving atations. As the re-setting of a cypher nachine alvays takes a cortain amount of time, valuable tine is lost as a result of these interruptions. An apparatus is therefors to be evolved which will prevent the de-synchronisation of the cypher mschines and is especially suitable for use in connection aith $1 / \mathrm{T}$.

The solution:

The exact synchronisation of the receiving cypher machine with the tranamitting cypher machine is achieved by keeping the transmitting and receiving cfpher machines synchronised by providing each oith its own quartz-crystal controlled drive. When truffic comenocs, both cypher machines are atarted by an iapulse given by the transmitting side.
II. Method of working:
1.) The transmitting station asks the receiving atation by morae transmitting key whether it is preparad to roceive.
2.) The oypher machines are then set in the presoribed starting position.
3.) Then the receiving station has overything prepared for working, the receiving station asks the tranamitting station to tranamit the "synchronising signal".
4.) The transmitting station actuates the "synohronising signal" and control impulses are transmitted.
5.) The receiving station brings ita machine into the oorrect phase position with the tranmitting machine.
(a) Coarae adjustment: The recoiving meohaniam in brought into the correct phase position by means of a press-button control. Lagging behind or atraggling ahead are indioated by respeative glow-lamps, whioh fade out when the oorreot phase poaition is reached.
(b) Fine adjustiment: Iy means of the same press-button control, an ameter with its zero in the oentre is aet to "zero". The atane phase for the control waven betwoon tho transmitting station and the receiving atation is thus aohieved and a atart can now be made.
6.) The receiving station now asks the transmitting station by means of the morse tranamitting key; "Please send the 'advanoe aignal'."
7.) The transmitting atation actuates the "advance aignal" wwitch and, after the third of auch aignals, whioh are indioated by the 11 ghting up of a glow-lamp, puts the starting awitch over.
8.) After the third lighting up of the "advance signal" lamp, the reoeiving station likewise puts its atarting switch over.
9.) Then the starting switch is put into oporation at the tranamitting station and at the recoiving station, the tranamitting and recoiving cypher machines are started aynchronously by means of the transaitting mechanism at the transmitting station and the receiving meohanism at the recoiving station, which are already running aynohronously. The line is thus rsady for working in one direotion, To achieve a synchronised start in the other direotion of traffin.

The problem subaitted wis as foiloma:
In long-aliatance telegraphio sraffic using autocatio lettor by letter synchronised cypher machines, apeoial difficultiea in working are ercounterea as the result of interference inpulsea in the lines of communioation ($1 / 2 / T$ and espeolally I / T) frequently causing the cypher machines to slip out of synohronisation botaeen the tranamitting atations and the recefving stations. as the re-setting of a cypher machine alvays takea a cartain amount of time, valunble timo is lost as a result of these interruptions. An apparatus is therefore to be evolved which will provent the de-synchronisation of the cypher machinos and is eapecially suitable for use in oonnection with $19 / 7$.

The zolution:

The exact synchrondaation of the reoviving cypher machine with the tranamitting cypher machine is achieved by keeping the tranamitting and receiving aypher anchinea aynohronised by providing each with its own quartz-cryatal controlled drive, Then truffic coarsnoes, both cypher machines are atarted by an impulae given by the tranumitting side.
II. Kethod of working:
1.) The tranamitting atation asks the receiving station by morac transmititing koy whethor it is prepared to rocoive.
2.) The cypher machinas are then set in the presuribed atarting position.
3.) When the receiving station has everything prepared for woricing, the receiving station aaks the tranamitting atation to transmit the "aynohroniaing signal".
4.) The tranamitting atation aotuates the "mynohroniaing aignal" and control impulses are transmitted.
5.) The recoiving station bringa its machine into the oorreot phase position with the transmitting machine.
(a) Coarse adjustiment: The recelving mechanism is brought into the correct phase position by means of a press-button control. Lagging behind or atraggling ahead are indicated by respeotive glow-lamps, which fade out when the correct phase position is reached.
(b) Fine adjustiment: Iy means of the same presa-button control, an armeter with its zero in the centre is set to "zero". The aame phase for the control waves betwoen the trananitting atation and the recelving atation is thus achieved and a start can not be made.
6.) The receiving station now aaks the tranamitting atation by means of the morse tranauitting koy; "Please aend the 'advanoe signal'."
7.) The transmitting station actuates the "advance signal" switch and, after the third of suoh signals, which are indioated by the lighting up of a glow-lamp, puts the starting awitoh over.
8.) dfter the third lighting up of the "advance aignal" lamp, the recoiving station 11 j covise puts ita starting siditoh over.
9.) Then the atarting awitioh is put into operation at the tranandtting station and at the receiving station, the tranamitting and receiving cypher machines are started synchronously by means of the transuitting mechaniam at the tranamitting station and the receiving sechaniam at the receiving atation, which are already running aynchronousiy. The line is thus ready for working in one direotion. To achieve a aynchronised start in the other direction of traffic, the process is repeated, the roceiving atation taking over the transmiasion and the tranamitting atation the reception. Every synchronised station thus onnaistn of a oomplete transmitting and receiving
III. Description of the construction of the Synchronised Teleprintor Installation.
A.) Transmitter. (Fig. 1)

Synchronisation between transmitter and receiver demands that the teleprinter signals transmittod should stand in correct relationship to the current impulses fixed by the synohronisation. On the other hand, it must at any time be possible to transmit by hand on the transmitting teleprinter, series of letters, figures or signals strung together at will. This requirerant is satisfled by using a double collector, whioh is loaded by the teleprinter impulses coning from the teleprinter (FM) or the automatio transmitter (AS) and whose triggering is controlled by the transmitter distributor (SK) by means of synchronised oams.

In prinoiple, the following may be said in oonneotion with the triggering of any givan teleprinter message:

If the signal is synchronised with the "SK", it can be triggered atraight auray. If it lags behind in point of view of time, it must be stored up until "SK" reaohes its starting point again and undortakes the triggering. Care must be taken that no further aignal enters the apparatus while the stored signal is being triggored. The introduction of a double colleotor is therefore unavoiaubje. This double oollector consists of two sets of five telegraphic relays,

Through the atart-stop distributor (PK), 10 mscc are sorted out from the individual ourrent steps of the teleprinter signals transmitted and fed alternately to colleotors 1 and 2. The "PK" shaft is driven on the start-stop prinoiple via a friction clutch. The preparation for and the commenoament of the triggering of the colleotor relays are effected by "PK" and "SK". As soon as the first signal inpulse is atored up in the collector, the triggering of the colleotor is prepared in "U". "SK" can then trigger the collector synchronously and pass the signals into the oypher machine, whenoe they are transmitted encyphered.
B.) Receiver. (Fig. 2)

The receiver ploks up the incoming signals and starts the "pK" system, which is driven through a friction clutch and diatributes the incoming teleprinter impulses to the colleotor " A ".

The synchronised distributor "SK" passes the stored impulses from the collector synchronously to the oypher machine, where they are decyphered and collected in the additional collootor of tho recsiver.

The additional colleotor of the receiver: if the transmitting teleprinter (FH) is at "stop", the tranamitter sends cypher text. On decyphering, five blank signals result. The receiving teleprinter ($\mathrm{Fl} \mathrm{I}_{\mathrm{E}}$) would not, however, ramain at "stop" like the transmitting "Fis s ", but would be constantly started and stopped without, howaver, recording any signals; the impression is given that the machine is running continuously. The "Fly" should behave exactly the same as the "FPKs". It should further more be possible to send two-way traffic, $i_{0} e$. it mist be possible to transmit and receive alternately with one machine. The switohing-over of the machine from "Transmit" to "Receive" is to be automatic and depondent on the incoming signals. As long as the text is coming in, the machine is to be
siritohed to "Reoeive", but as soon as consocutive blank signals arrive, the machins is to out out reception and be ready to tranamit. The deoiaion as to whether text or blank signals are boing received oan, however, only bo made after the fifth signal, as the outting-out and switahing-over can only oome into offact if all five algnals ore blanks, Therefore, the aignals in the reoeivar, after decrphering, must onoe more be colleoted and triggered. This task is takon over by the auxiliary colleotor togather with tha distributor " SH_{2} ".

c). Synchronisation.

On the synchronising switoh being pit ovor, the tranamitter sends 6 oomplese toleprinter aignals without ourrent and one with ourrent. This prooedurs is repeated periodionlly.
a). Goarse Indioation (Fig e 3). Tho signal with ourrent serves as a ooarae Indscavion The receivar is eynchronised with this aignol during the starting period. The starting periol lasts 1050 nseo . This period is neosssary in ordor to ensure that the starting awitch is turned on for starting. Two glow-lagpa serve ss indioators and heve to bo extinguiahed by means of the phasg regulator, whioh is effeatod by "blacking out" the whole st.gnal by means of cems 1 and 2 。
b). PIne indioation (IIg, 4). The fine indiostion onables tho phase to be agouravoly adjustec, For the purpose of masuring the phase, the falling side of the etop of the innoming aignal. is oonpared with the falling side of a signal produnod in the reosiver, which has been moved through 180 degroes. Zy altering the alles, voitage-pjeks ara groduced which oontrol two saw-tooth generators. A moving coil mater intigates the diroot ourront componenta betwoen the two genorators and this is the moasuremont of the phase deviation between the transeftter and the receiver.
D.) 5tarting,

By earitohing on the "advenco signal" switch, the stop signals ocase to be transmitted. The complete signal of 115 msec is now only sent out every 1050 maec. After the advanoe signal lamp has been lit up three timas, the atarting switch is aotuated in the transuitter and in the reouiver. Aotuating the switoh is only a preliminary to starting. The aotuel start is offooted by two parallel cama of 1050 and 150 mgec duration.

घ.) Drive (Fig. 5).
The following is used as the rugulating prinoiple for the aynohronised drive: Feriodio loading of a singlo armature transformer on its slip-rings by means of a thyratron switoh. The thyratron switich is controlled by the quarts frequency of $83 \mathrm{1} / 3$ os obtained by frequency division.

To aynahronine the motor, the latter is overexaited on being switohed on. The exoltation declines alowly, thus causing the number of revolutions to riee slowly, After the nominal fumber of revolutions is renohed, the modulator indicates a froquency of zero and the exoitation then remains oonstant.

The modulator compares the frequency of $83 \frac{1}{3}$ Cs derived from the quarta with the frequency derived from the motor. If both agree exactly, the valuo of the matohed exaiter ourrent is maintained via the starting arrangement and the exaitation remains constant.

Zcohnionl Data.

1. The synohronising installation is designed for voltages of $110-250$ volts, 50 ayoles.
2. Then working from 220 volt mains, mains voltage fluctuations in the range 170 - 250 volta are automatioally smoothed out for the apparatus.
3. The telegraply code can be arranged for 7 or $7 \frac{1}{2}$. In one direotion, therefore, output is ebout 500,000 latters per day; with four-channel working, therefore, it would thus be about $1,000,000$ letters per day for both directions.
4. The ensyphering apparatus is designed so as to be capable of being removeć separately, so that it can be ohanged as occasion demands. For experimental purposea, the cyphor drums (which are well known from normal teleprinter operatis from the ayphering attachment of Lfossrs. IORENZ of Mothhausen, wero used, The firm itself has also made atteripts to improve the cypher machine, but the axperimenta could not be completed owing to the war.
5. The acouracy of the quartz control is of the order of magnitude of $10^{-7} /$ sec. The synohrondeing apparatus oan run for 10 to 12 hours without reofprocal phase comparison, without falling out of step during that time.
V. General focts in regard to the synohroaising installation:
6. The aynchronlaing installation oan be used for two different types of work.
a) As an independent line, traffio pasaing oniy between one $7 / T$ atation and another.
b) Aa part of a teleprinter network, when for instanca, a W / T aynohronised lina is siritchod into a normal I/T teloprinter notwork. In this oase, the aynohronised line would be oonneoted to the T / P exchange by means of the four-channel syatem.
7. The synchronising installation is to a large extent aorpletely autonatio and therefore requires only a very mall staff of operators, 1 to 2 man suffioing.
8. As the cypher machines are running constantly in the synohronising installation, they transmit pare cypher during the times when no teleprinter signals are baing sent. Peak periods or alack perlods of traffic oannot therofore be reoognised by studying the $\# / T$ traffic, aa the trafilio is oanouflagod.
9. The synchronising installation pernits the use of any modulation processes that may be deaired for W / T tranamission. The keying relay of the aynohroniaing installation supplies double ourrent.

VI. State of development.

as regards the developesant of "synohronisation", at the beginning of 1945 there was a complete link consiating of two atations equipped with the uaual nomal teleprinter cyphering attachnont for experimental working. The link worked betwean the PEVERSTETI laboratory at BBERQUNESTADT and the experimontal post of Professor VIERLIIG at WENDEBOBTEL near HANOVER.
 plete station (including a large number of constructional doouments) was lost as the result of aerial attaok on the artorial road near HEPISDCRFRR KRJUZ, so that only one station is available at the moment.

After repleaing the lost apparatus and a brief, finnl poriod of experimental working, which has not so far beon uarried out ouring to lack of tine, the develoument of "ranohroniastton" mould be complete and it oould then be turned over for posntblo markt"anture.

The problem was to develop an apparatus for telephonic enoypherment which could also be used for π / T. It is therefore essentisl, under all oirounstances, that a constantly varying oypher is availeble.

Regarding the basio orinoiples:
fis we had had no provious experiense that would hel.p to solve this problem, we docided at first to evolvo individual components from which ve could build up an "unoraokable" apgaratus. It then occurred to us that the suggestion put forward by H. DUDUEY of the BRiL TELEPHONS LGBOH.TORIES offered considerable prospeots; this auggestion involved the uplitting up of the speech into its individual charaoteriatios, which are then transmitted by selseted oarriers. The speech is afterwards antifioially reprodused in the reoeiver by controlling these characteristics. This apparatus would not, of oourse, provide absolute enoypherment, but orly sarambling. a ao-oalled ohannel-sarambling, i.e, a periodio or parmatient variation of the assignment of the incividual oarribe frequenoies to the oharaoteristios would also fail to produse a real enoypherment. We planned to carry out a total enogpherment of these charaoteristios by superimposing interference direot voltages sinilar to apeech in each ohannel, compensating these interference voltages again in the regeiver. Furthermore, the amplitude nodulation of the indivtdeal speech ohannels was to be replaced by frequenay noculation. It han not hitherto been possible, however, to test these two methods. To put them into execution vould require a considerable time for development before they would be ready for operational use and plans were therefors made to obtain an adequate cypher by ocmbining artifiaial speach with another method, that of "three-fold wobbulating", whioh is described in another section. In this oonneotion, the oypher period is derived from a telegraphic oypher which is already available.

Desoription of the construction:

1) Transmitter. The dirauit aan be seen in Fig. 6. The speeoh fed to the transmitter is aplit into 8 frequenoy bands of $180-3060 \mathrm{Cs}$ by the band-filter (Pig, 7). The 8 partial bends thus obtained are amplified to determine their power sontent and rectified (Fig. 8); the direct potential thus obtained is a measure of the speech porer oontained in aach frequency band. The 8 aarriers are next amplitude modulated by means of these 8 direct voltagen (after they have been filtered through low-pass filters of 30 Cs each) and passed together to the line. The available frequency band could easily be restrioted to $300-2400 \mathrm{Cs}$ by ohoosing suitable oarrier frequenoies, but this would entail increased expenditure in building the oarrier filters. For the sake of oompleteness, it should be mentioned that we have construoted a laboratory model with 15 speech ohannels, but found out by experiment that the quality of the speech suffers only very slightly when only 8 channels are used, if the frequenoy range usod is the same.

The transmission of a charaoteristic for the fundamental pitch and the periodio pitch fluctuations of each speaker are essential for the faithful reproduation of the speech in the receiver. During development, the measurement of this fundamental tone caused us tremendous diffloulties. The amplitudes of the fundamental tone are always subject to great fluctuations and, in some cases, are just non-existent, so that they have to be produced artificially from their overtones by

The speech passes through a $180-660 \mathrm{Cs}$ bend filtar and a logarithmio amplifiar to the fraquency intormodulator, which produoes the fundmentel tone artifioially by moduleting several overtones together. The fundomental tone thus producod is taken through a seoond band-pass and a furthor arplificr to a multi-vilurator, which tranaforms the sinusoidal altornating voltages put into it into rectangular voltagos of oonstant amplitude. This ractangular voltege is differentiatod in the impulae stage; the peaks thus obtained, the nuabor of shioh is proportional to tho froquoncy of the fundnmental tone, are reotified and unod vie a $30 \mathrm{Cs} 10 w-p a s$ for modulating two ourrier frequencies. it firat aight it is not at all anparent why tho modulation of two onvriers ahouad be neoessary, but this is marely a snfety measure in ordar to enaure fundamental tone control by the reosiver aide in the ovent of the posaible failure of a arriar.

An additional diffioulty is tho later inglusion of a devioe for awituhing over the oarrier aesignment to the individual oheracteriatios.

Peodver (Pig. 11): The 10 oarrier froquancies coning from the line are suparated by a corresponding number of oarrior filters $\left(P_{1} \cdot\right.$ 12) and taken to the opyropriata afecah or oontrol channeds. In the apecoh ohannels, the oharenterdstios produced et the transmittor aro rucovered by reotifiaation and uaed for modulation with the appropriata harmonios from the impulee or noieo generator. The impulse genurator ($\mathrm{Hg} . \mathrm{B}$ 13) aurves to produce the hormenio frequencies present in the apeoch, whilst the noist generator (Flg . 14) reproduces the urrooioad, unharmonio nounds of speeah. Tho oarriers assigned to the control ohannels are likewise rectified and used for controlling the fundmmantal pitoh of the harnonle generator (impulse generator). If no direct voltsge is present in these ohannels, the ohangeover sudtch (Fig. 15) aonnects the noise generator to the speech channels, whilst on the appearanoe of a direct voltage this conneotion is out off and the harmonic generator awitched in instead. The 8 frequenoies cocurring behind the modulators in the speech channels aro taken through filters and switched in togethor and now form tho artifiaially produced speech. For the practias moricing of the apparatus, it is neoensary for both trensmitter and recoiver to be providod with a csll-shunting device for oarrying the oall impulse. In addition, there is an indiocting amplifior behind the input amplifler of woth the transmitter and the roceiver in order to be able to oontrol the requisite level and set it.

State of the work:
The synthetio specoh produotion installation is almost oomplete as regerds its metellio struoture. Only the melody trananitter, the impulse gonerator, the nofae generator, the ohangeover switch, the mains unit and the input and output ampliflers aro lacking. All conatructional data have boen determined, however, for the oomponents atill outatanding.

As already mentioned in the report on artifioial spoooh, in obteining en adequate oypher, another proceas was developod consiating of the combination of multi-wobbling with ring inversion and designated as three-fold wobbling (MTV). The basic procesas in the transmitter (Pig. 16) is as follows: The speuch band of $300-2,00$ oyoles is displaced in frequency in two parallol modiatora (12g. 17) on tha input side by a suitable choino of oarrior frequenoisa, so that ofter filtering out the lower side-bands there ure produosd tro adjacent inverted frequency bends ponsessing together twioe tha apeech-band breadth (4200 ayoles). This new band of 4200 avoles lroandth is impelled to and fro in front of a band-filter of 2100 Cs truadth (F1g. 18) by a modulator with ocntinually varying oarrier frequency (vobble oarrier) in such a why that a constantly ohenging partion is filtered out of the 4200 cyole band in which, however, all the frequenoies originally prasont are still present but in a constantly ohanging place. ifter this first wobbling, the new bend of 2100 Cs breadth is aplit by filtera into two holf-bands ench of 1050 ayoles, each of whioh is soparately and similerly inverted and mobbled as in the firat stage of the total band. This division into two edjacent bends esch of 1050 ayoles frequency band breadth, both of which are wobbled with disaimilar wobble strokes, is to destroy the speech texture. The two nem half-bands cbtained after pascing through the second stage are agein combined to form a total bend of 2100 cyoles breadth, which in the third stage is ance again ring-Inverted and robblud. Aftar passing through this stage, the bend which is in the renge of 13500 to 15600 ayoles as e result of repeated moduletion, is raduoed by furthar modulntion to the renge of 300 to 2400 oyoles and pessed to the line. The fixed oarrier irequenoles are produoed in generators (Fig. 19) working on the prinoiple of the Trensitron circuit and heving an adequate frequency conatancy. The wooble frequencies are produced in recotion generators, whose frequenoy oontrol for the final apparatus is derived frcee an alrandy available telegraph oode and is desoribed separately.

In the receiver (Pig. 20), the aame process as in the transmitter takes pleoe in axactly the ruverse order. A deteiled desoriptinn of the individual frequency tranapositiona is therefore suparfluous.

In order to reproduce the speech faithf'ully in the reoeiver, it is unoonditionally neoessary to synohronise the four difreront wobble frequenoies (which are oonstantly altering) in the tranamitter and in the reooiver. The laboratory experiments so far oarried out wore et first undertaken without aynohronising equipment. For the aake of sirplicity, the respootive wobble frequenoies for the transmitter and raceiver were taken frcen the same wobble generator.

Owing to the large number of moduletipns oocursing, the highast degree of performanoe had to se demanded of the filters employed in order to avoid all undesirable modulation produota. The oocurrence of gaps in the tot: 1 frequency bend of the speeoh, whioh would appreolably reduce the quality of the speech, was avoided by a special artificial cirouit for steepening the sides.
in earlier laboratory three-fold wobbling model, built by us with filters that did not satiafy these high damands, failed to produce speech of adequate quelity owing to the frequency gaps on leaving the receiver.

State of the work.
The following are available: Piltera, amplifiers, modulators, gonarators and four meshanioel woible genorators for trenemitter and receiver, construited for use in tise laboratory.

For the final deraign of the "unorackable" epparstus, it is intended to une the aridficial speaoh transmitter as a preliminary to the three-fold wobbling. It the input of the IIY trangmitter thare will not then be pure speech, as the 10 oarriers from the artificial apeech apparctus will be fed in here. At the WIV receiver output, then, thene oarriers wiLl be taken to the artificisl speech rooeiver, which traneforms thete charcoteristioa into sunthetio apeech.

Eynghonfoing installation for produging the robble-frequenales

for three-fold wobsling.

For apeeoh enayphormont with "ITV" (wobbuleted total enoyphering), four wobble frequenoies mast be lad syachronously and in equal phase to the wobble epparatus at the franemitting and reoeiving stetions. The periodio oourse of these frequencies must tiffer from eech other es much as possible end ecoh wobblu frequency mant pass through its enviseged irequenoy rengu in the most if acontinuous way possible. This tank is aolved in the folloring way (Pag. 5):
1.) The a/nohrorising and phase equavination at tho tranamitting and reoeiving stations is offeated by quertz-arystal controlled synohronising, ab developed in our Laboretory for telegruphio enoypherment.
2.) The wobble fraquenaies are produced by eleotranio gonerators (each of whose osallintory oirouits inaludes a variable condenser), which are rotaved from the synchronising apperstus via special intermedtate gearing and thus bring about a variation of the wobble frequenoy within the range dietated by the oapacitence veriation.
3.) By altering the gearing retio between the aynohsonising apparatus and the varieble condenser, the intermedinte guaring permits the periodic course of the oapeoftanoe varietion to bo alterad - depending upon the cypher signals that are tranamitted by the telegraphio aypher oontained in the synchroniaing opparatus.
4.) The different oouraes of the four wobble frequancien uned are effected by the five impulses of which each oypher signal conaista being reduced vie a collactor and diatributor to four different control impulses for the internediate gearing.

Desoription:
Re 1.): The control apparatus and the oypher from the tolegraphio synohronising apparatus can be used without alteration for speeah enoypherment. The oypher-boz with its drive is alupler, however, as the oams required for telegraphy con be diapenaed with. It is roocmended that it be oombined, from the point of view of oonstruotion, with the intermediate gears and the oolleotor-d1atributor, Starting, on oomenaing working, and the control of the phase position are, however, effeoted in a menner different from that used in telegraphy, as the oypher aignala are no longer tronsmitted to the ropecting station. Syachronising

Re 2.): The usual eleotronio generators with renotion are employed for generating the wobble frequenaies.

Re 3.): The task of the intermediate gearing is to derive variable numbers of revolutions from a oonstant number of revolutions of a high degree of oonatanay in such a wny that the pariations are alaarly defined ecoording to oize and phase and apply to the tranamitting and reosiving sides with the dogree of ecouracy importad by the nynohronising gear.

The working principle is as followa: The shaft ooming from the mynahronialing gear carries a ayatem of eccentrio disos which move impulae rols to and fro, these impulse rods being oonstructed in the form of toothed rods. hbove the toothed rods are arranged gear wheela with which the toothed rods oan engage, in such a way that in each aase only one tcothed rod turns the gear wheel, and the latter ia alwaya turned in the aame diruation. The eocentria dinon have different stroken so that, nocording to the idenitity of the toothed rod engaged, the gear whoel shaf't desoribea a different angle of rotation in one unit of tise. To the gear wheel shaft is coupled the variablo condenser of the frequency generator, which therefore executes a non-continuous rotary movement. Four different angular velooities are provided, so the pioture preaented by the following diagram providas an example of the periodlo course of a wobble frequenay:

The detailed method of working, as shewn in Figure 22, is an follows: From the synahronising apparatus is led off a shaft (1) which performs half a revolution in the unit of time during which the telegraphic aypher sends out a signsl (150 msec). For each speed of rotation of the gear wheel ahaft (2), which leads to the variable condenser, there is crranged on the shaf't (1) a system of two equel eocentric discs (3), displaced vir-i-via aoch other by 180 degrees, which nove the toothed impulae rods (4) to and fro in opposite direotions against the reoovery springs. In the left-hand position of rest, a brief but acmpleta imobilisation of the toothed rod is effeoted by the apeoial shape of the ecoentrio discs (3). During this time and depending upon the aypher signol, the magnet (6) is exoited and, by means of the two-arced lever (7), lifts the impulse rod (4) so that the latter's toothing engages the gear wheel (8) cn the ahaft (2). is soon as the advence movement oomenoes, the gear wheel (B) is sotusted too. Simulteneously, the Fin (9) penetratos the upper groove of the slide bar (10) and thereby holds the toothed rod (4) engaged with the gear wheel (8). The nagnat (6) is now able to release agnin. is soon es the advanoe movement ends, the toothed rod (4) falls into the lowar groove via the right-hand end of the slide ber and thus becomes disengaged from the gear wheel, whioh now stops.

This moment is simulteneously the beginning of the brief immobilisation of the opposite-rurning toothed rods. if iresh engagerent can coce about by lifting one of the opposite-toothod rods, whereupon the rotery motion of the gear whoel will continue, cocording to the impulse imparted, at the sane or at another engular velooity. The toothed rod which has just been engaged is simultansously taken back to the lower groove of the slide ber, diring which period no engagenent with the eear wheel will be possible. Then the opposite-rumning toothed rod is lifted, in order to provent the first rod from being reised as well, the olearance (11) is provided on the toothed rod and this olearance receives the slide bas roller on the lever (7). For the pairs of discs and toothad rods assigned to eaoh angular velooity, only a common lifting msenet (6) with lever (7) is required. On the sheft (1) there era four ainilnr double aystems, whose edvanoes are all different, but must in aach case be a whole multiple of the same indentation for all the toothed rode, so that a smooth engegement coours in each oase. if'ter each helf-rotation of the shaft (1), only one of the four magnets is excited, aocording to how the oolleotor-distributor imparts the inpulse. Correct insertion is ensured by a oonteat controlled by a oam on shaft (1).

Re 4.): The cypher continuously transmitus algnals which are equal as the result of the synohronising at the transmitting and recaiving stetions and which consist of five impulees in aoourdence with the 5-unit alphabet. In order to obtain from ona sitgnal four anguler velooities differing from each other for controliing the four wobble frequencies, exich of the four E"irst itupulses is canbined with the fifth icpulse. Thus, four different combinations are p:oduced in each case:

1) +-
2) $=$
3) ++
4) --

To each of the four combinations is assigned a magnet of the respeotive intermediate gearing, so that, for instance, from the signel -+++ the following impulses are produced:

For the first wobble frequenoy, impulse 1 with impulse 5-+gives velooity 3)

These ocmbinetions are obtained in the collector-diatributor by means of relays, e.g. aooording to the airouit shewn in Fig. 23. The triggering of the signal is effeoted by oam switahes synohronously driven by the synchrondsing apparatus.

In order to maka it diffloult for unauthorised parsons to overhear conversations, there was available in cernany an apparatus under the name of "Inverter" whijoh reversed the natural speech frequencies, i.e. tranaformen high into low frequenoies and J.ow into high. Since the sorambling effeot of this device was almost insignificent efter A short period of beocuing sooustcmed to it, it had to be improved by an extended method.

The results of fairly long experinents yielded the following expestences: Every speeoh sound has, in addition to oharacteriatic frequenjies, a dymamio peculfer to it and an osoiliating prooess peauliar to it; in many oases, especially in regard to monosyllabio words, the presence of the dynamio and the oscillating process is quite sufficiont to enable the word to be recognised. This reoognition is made partiaularly easy when, as the result of a fixed frequency change, the oharacteristio frequanoies are moved into another, but still comion, range.

Takine into constderation the fact that the oost had to be as low as possible, the following extended method was envisaged for the construction of a soroubling device :
1.) Restricting the speech band to be trenanittod to the frequancies of $200-1300$ ayoles.
2.) The sadition of a noise of equally great lovel and equal frequenoy breadth containing, if possible, all the speech frequenoies.
3.) The constont mixing of the speech and noise bands in adjecent frequencies by switching over, with the speech band inverted in addition.
4.) Influenoing the switahing over of the speech dynamic by eccelerating the switching over frequency.
5.) The suppression of noise during pauses in speach.
6.) In addition, to be provided later if necessary, which delays, from the point of view of time, the acceleration referred to in 4.) in order to obtain an effect resembling on eoho.

In order to ohange beck at the recoiving end the switching over that has been oarried out, the oontrolling of the awitching-over is passed ourrently to that end in the frequenyy band $300-400$ cyoles, which is purposely kept free of speech frequencies for the purpose. As, in the case of two-wire operation, two non-synchronised controls are present on the line, even whan a third receiver suitable for this scrambling process is switohed in, eavesdropping is as a rule impossible because no unembiguous control is present.

To test this apparatus by working it over feirly long lines, two opposite stations are being ereoted, in a form approaching the final constructional design, in parallel with a purely laboratory experimental construction. The ounstruction of this epperatus is atill in progress.

The funotion of this aponratur to briofly explained below on the besis of the atteohed "J.ow of' $1+2 t 2 \% a s^{\prime \prime}$ clagram:

The speeah voltage semirs, Itor tho ielephong is anplifled by a forked onsway in the frput arpiliter of the transaitter.

This ampilfied voltacs is then
a) Takan via a potentionuter of a suitable aizc via a low-pass to the two speech switohes, anal
b) iftor rectification, is usad for controling the noisa generatur aad for influenoing the svitching frequency (latar, if rocuseany; 7 a a the ruaing sime collponent).

Tho noise generator feeds the two noise switohes which are in parelle). rath the two speeah switahos.

Hith the objeat of moving to the desived frequency bends, the speech frequencies ara conserted, in aocordiance with the switches in the ring modulators, with the aid of the two carrior frequencies of 1700 and 2700 cycles. It is not neuesseay to lead the noise via modulatora, the this frequency band is proluced from the start wo to tiee breadth of 2500 cycles navossasy for vising the linu.

For filtering out the dosired modulation products or frequency banda, spaech and nojes are led via tha sou parallal filtera ir.terted et tha otiontat

1) J.on-paqs up そo 1500 cyclas \quad 2) Low pess up to 2500 groles
2) HH: pass of 1600 oycles and over 4) Low-pass up to 1300 aycles.

Tha switohes or tho filters 1) and 5) or 2) and 4) uxa elways simultanepusly open or olosed.
sit the output of the riflers is an amplirter and after that a high-pess, whioh reliably filters out all the frequencies below 400 cyclea.

The frequency mixture of $400-2500$ cysles is then passed to the line vid. a forkec varrturs.

The control voliage for switching over is produced from the frequencies of 340 and 343 cyoles possed over a ring modulator and filtered out through a low-pass. i two-stoga amplifier thet followa brings up the neoessary switohing power.

Of the two generators, the 343 cycle generator is altered, by the infiuence of the speech in its froquenoy, up to 346 oycles. The 340 cycle generator remeins constant and is used as the carrier for the controlling transmiasion. Por this purpose it is moduleted with the control frequency of $3-6$ cycles tapped behind the first amplifier stage. The control frequency, together with the speech, is passed to the line via a forkod carriar and a band-pass of $300-380$ oycles filter breadth.

Of the speech, the noise and the incoming control frequency which arrive in the line, all are lad via the line forkod-oarrier and the lavel-ragulator to the tyr pareillel bond-passes with a filtor

In the two ring modulators, the respective frequencies, and particularly the speech frequenoy, ere put baok into the original frequency bend with the aid of the two aorriers of 1700 and 2700 cyoles. In order that only the two speech frequencies should be audible in the receiver, the suoceeding switches are only olosed alternately, synchroHously with the transmitter end with the aid of the control frequency trananitted, when the incoming frequency band contains the appropriate speech band.

The speech is then taken vis an amplifier, and the subsequent band-pass with a filter range of $200-1300$ cycles, and via a forked carrier to the telephone.

The control frequency is brenahed off in parallel with the line forked-aarrier and taken, via the band-pass with the filter range of $300-380$ aycles to the control-note forked-carrier and a level regulator, to an amplifiar. if ter damodulation, the control voltage of 3-6 cycles is tokan to the switchis via a power amplifier.

Individuel oircuit diagrams are appended of the circuit elements usec, fncluding the switch, the noise generetor and the device for producing the control frequency.

1) The switch makes use of the property possessed by $\mathrm{Cu}_{2} \mathrm{O}$ cells, which have a resistanoe dependent upon the direction of the current. f.cording to the polarity of the oontrol voltage, the cells, which are arranged in a longitudinal oirouit, either let the ourrent through or blook it. Two means are used to suppress the residual voltage in the blooked condition:
a) E short-cirouit via the primary winding of the output carrier through $\mathrm{Cu}_{2} \mathrm{O}$ cells connected in the opposite way,
b) 2. bridge comnection consiating of a oapadity and a resistance, for taking an equally great and oppositely directed voltage to the output transformer.
2) The noise generator makes use of tho occurrence of nolse in the anode aircuit by using superregeneration. A high frequenoy osoillatory oircuit in the triode portion of the double valve ECH 11 is firmly ooupled with a low frequency oscillatosy airouit in the hexode portion by means of the connection betwoen the triode grid and the hexode grid Inside the valve. The oscillation of the low frequency portion lies far above the higheat frequenoies present and used in the noise. Further support for the superregeneration is afforded by the inductance of the input transformer of the switch, which is present in both anode oirouits. The closing and opening of the valve is effected by an alteration in the grid voltage through the rectified speech frequencies.
3) The double valve EDD 11 is used to produce the control voltage With a frequency of $3-6$ oyoles required for the cirouit. The connections of this double valve oan be seen from the appended individual circuit diagram "Control voltage produotion". The two separate generators of 340 and 343 - 346 aycles have the familiar 3 -point oirouit; only the dual use of the 340 aycle generator as the carrier frequency for the $3-6$ ayoles and as the oarrier for trananitting the control frequency are shewn in detail, together with the influenoing of the frequency of 343 cycles by the diaplacement of the grid working point of the valve.

Frequancy plen:

Specoи
Nolae

> Outper vai'a
$200-1300$ cyaloa $\quad 200-2500$ ayoles
To the Pour output filteca
ket: modulation aith 1700 ovoles

$$
1500-4.00 \text { ayoles } \quad 1000-(2500) \text { aycles }
$$

After modulation with 2700 cwalgs

$$
250-1400 \text { cyoles } \quad 200-1300 \text { ajoles }
$$

On the $15 n e$
$400-2500$ ayoles, plus thi corsinca frecronus $350 \pm 3-6$ oyolea.

